Honors & Awards

  • Postdoctoral Fellowship, American Heart Association (01/01/2014-12/31/2015)
  • The Presidential Award, Chinese Academy of Sciences (2011)

Professional Education

  • Doctor of Philosophy, University of Science and Technology of China (2011)
  • Ph.D., University of Science and Technology of China, Structural Biology (2011)

Stanford Advisors

Research & Scholarship

Current Research and Scholarly Interests

Structural and Functional Studies of beta-2 Adrenergic Receptor and Signalling Protein Complexes


Journal Articles

  • Development and Characterization of Pepducins as Gs-biased Allosteric Agonists. journal of biological chemistry Carr, R., Du, Y., Quoyer, J., Panettieri, R. A., Janz, J. M., Bouvier, M., Kobilka, B. K., Benovic, J. L. 2014; 289 (52): 35668-35684


    The β2-adrenergic receptor (β2AR) is a prototypical G protein-coupled receptor that mediates many hormonal responses, including cardiovascular and pulmonary function. β-Agonists used to combat hypercontractility in airway smooth muscle stimulate β2AR-dependent cAMP production that ultimately promotes airway relaxation. Chronic stimulation of the β2AR by long acting β-agonists used in the treatment of asthma can promote attenuated responsiveness to agonists and an increased frequency of fatal asthmatic attacks. β2AR desensitization to β-agonists is primarily mediated by G protein-coupled receptor kinases and β-arrestins that attenuate receptor-Gs coupling and promote β2AR internalization and degradation. A biased agonist that can selectively stimulate Gs signaling without promoting receptor interaction with G protein-coupled receptor kinases and β-arrestins should serve as an advantageous asthma therapeutic. To identify such molecules, we screened ∼50 lipidated peptides derived from the intracellular loops of the β2AR, known as pepducins. This screen revealed two classes of Gs-biased pepducins, receptor-independent and receptor-dependent, as well as several β-arrestin-biased pepducins. The receptor-independent Gs-biased pepducins operate by directly stimulating G protein activation. In contrast, receptor-dependent Gs-biased pepducins appear to stabilize a Gs-biased conformation of the β2AR that couples to Gs but does not undergo G protein-coupled receptor kinase-mediated phosphorylation or β-arrestin-mediated internalization. Functional studies in primary human airway smooth muscle cells demonstrate that Gs-biased pepducins are not subject to conventional desensitization and thus may be good candidates for the development of next generation asthma therapeutics. Our study reports the first Gs-biased activator of the β2AR and provides valuable tools for the study of β2AR function.

    View details for DOI 10.1074/jbc.M114.618819

    View details for PubMedID 25395624

  • Expression profiling reveals an unexpected growth-stimulating effect of surplus iron on the yeast Saccharomyces cerevisiae MOLECULES AND CELLS Du, Y., Cheng, W., Li, W. 2012; 34 (2): 127-32
  • Structures of the substrate-binding protein provide insights into the multiple compatible solute binding specificities of the Bacillus subtilis ABC transporter OpuC BIOCHEMICAL JOURNAL Du, Y., Shi, W., He, Y., Yang, Y., Zhou, C., Chen, Y. 2011; 436: 283-289


    The compatible solute ABC (ATP-binding cassette) transporters are indispensable for acquiring a variety of compatible solutes under osmotic stress in Bacillus subtilis. The substrate-binding protein OpuCC (Opu is osmoprotectant uptake) of the ABC transporter OpuC can recognize a broad spectrum of compatible solutes, compared with its 70% sequence-identical paralogue OpuBC that can solely bind choline. To explore the structural basis of this difference of substrate specificity, we determined crystal structures of OpuCC in the apo-form and in complex with carnitine, glycine betaine, choline and ectoine respectively. OpuCC is composed of two α/β/α globular sandwich domains linked by two hinge regions, with a substrate-binding pocket located at the interdomain cleft. Upon substrate binding, the two domains shift towards each other to trap the substrate. Comparative structural analysis revealed a plastic pocket that fits various compatible solutes, which attributes themultiple-substrate binding property to OpuCC. This plasticity is a gain-of-function via a single-residue mutation of Thr⁹⁴ in OpuCC compared with Asp⁹⁶ in OpuBC.

    View details for DOI 10.1042/BJ20102097

    View details for Web of Science ID 000291413200009

    View details for PubMedID 21366542

  • Crystal structure of the mucin-binding domain of Spr1345 from Streptococcus pneumoniae JOURNAL OF STRUCTURAL BIOLOGY Du, Y., He, Y., Zhang, Z., Yang, Y., Shi, W., Frolet, C., Di Guilmi, A., Vernet, T., Zhou, C., Chen, Y. 2011; 174 (1): 252-257


    The surface protein Spr1345 from Streptococcus pneumoniae R6 is a 22-kDa mucin-binding protein (MucBP) involved in adherence and colonization of the human lung and respiratory tract. It is composed of a mucin-binding domain (MucBD) and a proline-rich domain (PRD) followed by an LPxTG motif, which is recognized and cleaved by sortase, resulting in a mature form of 171 residues (MF171) that is anchored to the cell wall. We found that the MucBD alone possesses comparable in vitro mucin-binding affinity to the mature form, and can be specifically enriched at the surface of human lung carcinoma A549 cells. Using single-wavelength anomalous dispersion (SAD) phasing method with the iodine signals, we solved the crystal structure of the MucBD at 2.0Å resolution, the first structure of MucBDs from pathogenic bacteria. The overall structure adopts an immunoglobulin-like fold with an elongated rod-like shape, composed of six anti-parallel β-strands and a long loop. Structural comparison suggested that the conserved C-terminal moiety may participate in the recognition of mucins. These findings provided structural insights into host-pathogen interaction mediated by mucins, which might be useful for designing novel vaccines and antibiotic drugs against human diseases caused by pneumococci.

    View details for DOI 10.1016/j.jsb.2010.10.016

    View details for Web of Science ID 000288640100030

    View details for PubMedID 21055474

  • Crystal structures of the apo and GDP-bound forms of a cupin-like protein BbDUF985 from Branchiostoma belcheri tsingtauense PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS Du, Y., He, Y., Gaowa, S., Zhang, X., Chen, Y., Zhang, S., Zhou, C. 2010; 78 (12): 2714-2719

    View details for DOI 10.1002/prot.22771

    View details for Web of Science ID 000280822000013

    View details for PubMedID 20589641

  • Crystal structure of Saccharomyces cerevisiae glutamine synthetase Gln1 suggests a nanotube-like supramolecular assembly PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS He, Y., Gui, L., Liu, Y., Du, Y., Zhou, Y., Li, P., Zhou, C. 2009; 76 (1): 249-254

    View details for DOI 10.1002/prot.22403

    View details for Web of Science ID 000266370100021

    View details for PubMedID 19322816

Stanford Medicine Resources: