School of Medicine

Showing 1-3 of 3 Results

  • Dick┬áZare

    Dick Zare

    Marguerite Blake Wilbur Professor in Natural Science and Professor, by courtesy, of Physics

    Bio My research group is exploring a variety of topics that range from the basic understanding of chemical reaction dynamics to the nature of the chemical contents of single cells.

    Under thermal conditions nature seems to hide the details of how elementary reactions occur through a series of averages over reagent velocity, internal energy, impact parameter, and orientation. To discover the effects of these variables on reactivity, it is necessary to carry out studies of chemical reactions far from equilibrium in which the states of the reactants are more sharply restricted and can be varied in a controlled manner. My research group is attempting to meet this tough experimental challenge through a number of laser techniques that prepare reactants in specific quantum states and probe the quantum state distributions of the resulting products. It is our belief that such state-to-state information gives the deepest insight into the forces that operate in the breaking of old bonds and the making of new ones.

    Space does not permit a full description of these projects, and I earnestly invite correspondence. The following examples are representative:

    The simplest of all neutral bimolecular reactions is the exchange reaction H H2 -> H2 H. We are studying this system and various isotopic cousins using a tunable UV laser pulse to photodissociate HBr (DBr) and hence create fast H (D) atoms of known translational energy in the presence of H2 and/or D2 and using a laser multiphoton ionization time-of-flight mass spectrometer to detect the nascent molecular products in a quantum-state-specific manner by means of an imaging technique. It is expected that these product state distributions will provide a key test of the adequacy of various advanced theoretical schemes for modeling this reaction.

    Analytical efforts involve the use of capillary zone electrophoresis, two-step laser desorption laser multiphoton ionization mass spectrometry, cavity ring-down spectroscopy, and Hadamard transform time-of-flight mass spectrometry. We believe these methods can revolutionize trace analysis, particularly of biomolecules in cells.

  • Ashley Zehnder

    Ashley Zehnder

    Postdoctoral Research fellow, Program in Epithelial Biology

    Current Research and Scholarly Interests My current research focuses on novel methods to Erk1/2 MAP kinase (MAPK) cascade in cancer. Up-regulation occurs in >30% of human cancers, making this a key therapeutic target. MAPK scaffolds, such as IQGAP1, assemble pathway kinases together to effect signal transmission. Disrupting scaffold function offers a potentially orthogonal approach to MAPK cascade inhibition. We have IQGAP1 to be necessary for Ras-driven tumorigenesis and are utilizing this discovery to dissect the ERK1/2 pathway.

  • James L. Zehnder, M.D.

    James L. Zehnder, M.D.

    Professor of Pathology and of Medicine (Hematology) at the Stanford University Medical Center

    Current Research and Scholarly Interests Our laboratory focuses on translational research in 2 main areas - genomic approaches to diagnosis and minimal residual disease testing for patients with cancer, and molecular basis of disorders of thrombosis and hemostasis. My clinical focus is in diagnosis and treatment of disorders of hemostasis and thrombosis and general hematology.

Stanford Medicine Resources: