Bio

Professional Education


  • Doctor of Philosophy, Keio University (2010)
  • Doctor of Medicine, Keio University (1999)

Stanford Advisors


Publications

All Publications


  • Microfluidic Single-Cell Analysis of Transplanted Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes After Acute Myocardial Infarction. Circulation Ong, S., Huber, B. C., Lee, W. H., Kodo, K., Ebert, A. D., Ma, Y., Nguyen, P. K., Diecke, S., Chen, W., Wu, J. C. 2015; 132 (8): 762-771

    Abstract

    Human induced pluripotent stem cells (iPSCs) are attractive candidates for therapeutic use, with the potential to replace deficient cells and to improve functional recovery in injury or disease settings. Here, we test the hypothesis that human iPSC-derived cardiomyocytes (iPSC-CMs) can secrete cytokines as a molecular basis to attenuate adverse cardiac remodeling after myocardial infarction.Human iPSCs were generated from skin fibroblasts and differentiated in vitro with a small molecule-based protocol. Troponin(+) iPSC-CMs were confirmed by immunohistochemistry, quantitative polymerase chain reaction, fluorescence-activated cell sorting, and electrophysiological measurements. Afterward, 2×10(6) iPSC-CMs derived from a cell line transduced with a vector expressing firefly luciferase and green fluorescent protein were transplanted into adult NOD/SCID mice with acute left anterior descending artery ligation. Control animals received PBS injection. Bioluminescence imaging showed limited engraftment on transplantation into ischemic myocardium. However, magnetic resonance imaging of animals transplanted with iPSC-CMs showed significant functional improvement and attenuated cardiac remodeling compared with PBS-treated control animals. To understand the underlying molecular mechanism, microfluidic single-cell profiling of harvested iPSC-CMs, laser capture microdissection of host myocardium, and in vitro ischemia stimulation were used to demonstrate that the iPSC-CMs could release significant levels of proangiogenic and antiapoptotic factors in the ischemic microenvironment.Transplantation of human iPSC-CMs into an acute mouse myocardial infarction model can improve left ventricular function and attenuate cardiac remodeling. Because of limited engraftment, most of the effects are possibly explained by paracrine activity of these cells.

    View details for DOI 10.1161/CIRCULATIONAHA.114.015231

    View details for PubMedID 26304668

  • Microfluidic Single-Cell Analysis of Transplanted Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes After Acute Myocardial Infarction CIRCULATION Ong, S., Huber, B. C., Hee Lee, W., Kodo, K., Ebert, A. D., Ma, Y., Nguyen, P. K., Diecke, S., Chen, W., Wu, J. C. 2015; 132 (8): 762-771
  • MicroRNA-mediated regulation of differentiation and trans-differentiation in stem cells ADVANCED DRUG DELIVERY REVIEWS Ong, S., Lee, W. H., Kodo, K., Wu, J. C. 2015; 88: 3-15

    Abstract

    MicroRNAs (miRNAs) are key components of a broadly conserved post-transcriptional mechanism that controls gene expression by targeting mRNAs. miRNAs regulate diverse biological processes, including the growth and differentiation of stem cells as well as the regulation of both endogenous tissue repair that has critical implications in the development of regenerative medicine approaches. In this review, we first describe key features of miRNA biogenesis and their role in regulating self-renewal, and then discuss the involvement of miRNAs in the determination of cell fate decisions. We highlight the role of miRNAs in the emergent field of reprogramming and trans-differentiation of somatic cells that could further our understanding of miRNA biology and regenerative medicine applications. Finally, we describe potential techniques for proper delivery of miRNAs in target cells.

    View details for DOI 10.1016/j.addr.2015.04.004

    View details for Web of Science ID 000358628200002

    View details for PubMedID 25887992

  • Response to letter regarding article, "Cross talk of combined gene and cell therapy in ischemic heart disease: role of exosomal microRNA transfer". Circulation Ong, S., Lee, W. H., Huang, M., Dey, D., Kodo, K., Sanchez-Freire, V., Gold, J. D., Wu, J. C. 2015; 131 (12)

    View details for DOI 10.1161/CIRCULATIONAHA.114.014467

    View details for PubMedID 25802264

  • HIF-1 reduces ischaemia-reperfusion injury in the heart by targeting the mitochondrial permeability transition pore CARDIOVASCULAR RESEARCH Ong, S., Lee, W. H., Theodorou, L., Kodo, K., Lim, S. Y., Shukla, D. H., Briston, T., Kiriakidis, S., Ashcroft, M., Davidson, S. M., Maxwell, P. H., Yellon, D. M., Hausenloy, D. J. 2014; 104 (1): 24-36

    View details for DOI 10.1093/cvr/cvu172

    View details for Web of Science ID 000343317000005

  • HIF-1 reduces ischaemia-reperfusion injury in the heart by targeting the mitochondrial permeability transition pore. Cardiovascular research Ong, S., Lee, W. H., Theodorou, L., Kodo, K., Lim, S. Y., Shukla, D. H., Briston, T., Kiriakidis, S., Ashcroft, M., Davidson, S. M., Maxwell, P. H., Yellon, D. M., Hausenloy, D. J. 2014; 104 (1): 24-36

    Abstract

    Hypoxia inducible factor-1 (HIF-1) has been reported to promote tolerance against acute myocardial ischemia-reperfusion injury (IRI). However, the mechanism through which HIF-1 stabilization actually confers this cardioprotection is not clear. We investigated whether HIF-1¦Á stabilization protects the heart against acute IRI by preventing the opening of the mitochondrial permeability transition pore (MPTP) and the potential mechanisms involved.Stabilization of myocardial HIF-1 was achieved by pharmacological inhibition of prolyl hydroxylase domain-containing enzyme (PHD) using GSK360A or using cardiac-specific ablation of von-Hippel Lindau protein (VHL(fl/fl)) in mice. Treatment of HL-1 cardiac cells with GSK360A stabilized HIF-1, increased the expression of HIF-1 target genes pyruvate dehydrogenase kinase-1 and hexokinase II (HKII) and reprogrammed cell metabolism to aerobic glycolysis, thereby resulting in the production of less mitochondrial oxidative stress during IRI, and less MPTP opening, effects which were shown to be dependent on HKII. These findings were further confirmed when HIF-1 stabilization in the rat and murine heart resulted in smaller myocardial infarct sizes (both in and ex vivo), decreased mitochondrial oxidative stress, and inhibited MPTP opening following IRI, effects which were also found to be dependent on HKII.We have demonstrated that acute HIF-1¦Á stabilization using either a pharmacological or genetic approach protected the heart against acute IRI by promoting aerobic glycolysis, decreasing mitochondrial oxidative stress, activating HKII, and inhibiting MPTP opening.

    View details for DOI 10.1093/cvr/cvu172

    View details for PubMedID 25063991

  • Characterization of the molecular mechanisms underlying increased ischemic damage in the aldehyde dehydrogenase 2 genetic polymorphism using a human induced pluripotent stem cell model system SCIENCE TRANSLATIONAL MEDICINE Ebert, A. D., Kodo, K., Liang, P., Wu, H., Huber, B. C., Riegler, J., Churko, J., Lee, J., de Almeida, P., Lan, F., Diecke, S., Burridge, P. W., Gold, J. D., Mochly-Rosen, D., Wu, J. C. 2014; 6 (255)
  • Characterization of the molecular mechanisms underlying increased ischemic damage in the aldehyde dehydrogenase 2 genetic polymorphism using a human induced pluripotent stem cell model system. Science translational medicine Ebert, A. D., Kodo, K., Liang, P., Wu, H., Huber, B. C., Riegler, J., Churko, J., Lee, J., de Almeida, P., Lan, F., Diecke, S., Burridge, P. W., Gold, J. D., Mochly-Rosen, D., Wu, J. C. 2014; 6 (255): 255ra130-?

    Abstract

    Nearly 8% of the human population carries an inactivating point mutation in the gene that encodes the cardioprotective enzyme aldehyde dehydrogenase 2 (ALDH2). This genetic polymorphism (ALDH2*2) is linked to more severe outcomes from ischemic heart damage and an increased risk of coronary artery disease (CAD), but the underlying molecular bases are unknown. We investigated the ALDH2*2 mechanisms in a human model system of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) generated from individuals carrying the most common heterozygous form of the ALDH2*2 genotype. We showed that the ALDH2*2 mutation gave rise to elevated amounts of reactive oxygen species and toxic aldehydes, thereby inducing cell cycle arrest and activation of apoptotic signaling pathways, especially during ischemic injury. We established that ALDH2 controls cell survival decisions by modulating oxidative stress levels and that this regulatory circuitry was dysfunctional in the loss-of-function ALDH2*2 genotype, causing up-regulation of apoptosis in cardiomyocytes after ischemic insult. These results reveal a new function for the metabolic enzyme ALDH2 in modulation of cell survival decisions. Insight into the molecular mechanisms that mediate ALDH2*2-related increased ischemic damage is important for the development of specific diagnostic methods and improved risk management of CAD and may lead to patient-specific cardiac therapies.

    View details for DOI 10.1126/scitranslmed.3009027

    View details for PubMedID 25253673

  • Cross Talk of Combined Gene and Cell Therapy in Ischemic Heart Disease Role of Exosomal MicroRNA Transfer CIRCULATION Ong, S., Lee, W. H., Huang, M., Dey, D., Kodo, K., Sanchez-Freire, V., Gold, J. D., Wu, J. C. 2014; 130 (11): S60-?
  • Cross talk of combined gene and cell therapy in ischemic heart disease: role of exosomal microRNA transfer. Circulation Ong, S., Lee, W. H., Huang, M., Dey, D., Kodo, K., Sanchez-Freire, V., Gold, J. D., Wu, J. C. 2014; 130 (11): S60-9

    Abstract

    Despite the promise shown by stem cells for restoration of cardiac function after myocardial infarction, the poor survival of transplanted cells has been a major issue. Hypoxia-inducible factor-1 (HIF1) is a transcription factor that mediates adaptive responses to ischemia. Here, we hypothesize that codelivery of cardiac progenitor cells (CPCs) with a nonviral minicircle plasmid carrying HIF1 (MC-HIF1) into the ischemic myocardium can improve the survival of transplanted CPCs.After myocardial infarction, CPCs were codelivered intramyocardially into adult NOD/SCID mice with saline, MC-green fluorescent protein, or MC-HIF1 versus MC-HIF1 alone (n=10 per group). Bioluminescence imaging demonstrated better survival when CPCs were codelivered with MC-HIF1. Importantly, echocardiography showed mice injected with CPCs+MC-HIF1 had the highest ejection fraction 6 weeks after myocardial infarction (57.1±2.6%; P=0.002) followed by MC-HIF1 alone (48.5±2.6%; P=0.04), with no significant protection for CPCs+MC-green fluorescent protein (44.8±3.3%; P=NS) when compared with saline control (38.7±3.2%). In vitro mechanistic studies confirmed that cardiac endothelial cells produced exosomes that were actively internalized by recipient CPCs. Exosomes purified from endothelial cells overexpressing HIF1 had higher contents of miR-126 and miR-210. These microRNAs activated prosurvival kinases and induced a glycolytic switch in recipient CPCs, giving them increased tolerance when subjected to in vitro hypoxic stress. Inhibiting both of these miRs blocked the protective effects of the exosomes.In summary, HIF1 can be used to modulate the host microenvironment for improving survival of transplanted cells. The exosomal transfer of miRs from host cells to transplanted cells represents a unique mechanism that can be potentially targeted for improving survival of transplanted cells.

    View details for DOI 10.1161/CIRCULATIONAHA.113.007917

    View details for PubMedID 25200057

  • Modeling inherited cardiac disorders. Circulation journal Sallam, K., Kodo, K., Wu, J. C. 2014; 78 (4): 784-794

    Abstract

    Advances in the understanding and treatment of cardiac disorders have been thwarted by the inability to study beating human cardiac cells in vitro. Induced pluripotent stem cells (iPSCs) bypass this hurdle by enabling the creation of patient-specific iPSC-derived cardiomyocytes (iPSC-CMs). These cells provide a unique platform to study cardiac diseases in vitro, especially hereditary cardiac conditions. To date, iPSC-CMs have been used to successfully model arrhythmic disorders, showing excellent recapitulation of cardiac channel function and electrophysiologic features of long QT syndrome types 1, 2, 3, and 8, and catecholaminergic polymorphic ventricular tachycardia (CPVT). Similarly, iPSC-CM models of dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM) have shown robust correlation of predicted morphologic, contractile, and electrical phenotypes. In addition, iPSC-CMs have shown some features of the respective phenotypes for arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C), LEOPARD syndrome, Pompe's disease, and Friedriech's ataxia. In this review, we examine the progress of utilizing iPSC-CMs as a model for cardiac conditions and analyze the potential for the platform in furthering the biology and treatment of cardiac disorders.  

    View details for PubMedID 24632794

  • Costimulation-Adhesion Blockade Is Superior to Cyclosporine A and Prednisone Immunosuppressive Therapy for Preventing Rejection of Differentiated Human Embryonic Stem Cells Following Transplantation STEM CELLS Huber, B. C., Ransohoff, J. D., Ransohoff, K. J., Riegler, J., Ebert, A., Kodo, K., Gong, Y., Sanchez-Freire, V., Dey, D., Kooreman, N. G., Diecke, S., Zhang, W. Y., Odegaard, J., Hu, S., Gold, J. D., Robbins, R. C., Wu, J. C. 2013; 31 (11): 2354-2363

    Abstract

    Rationale: Human embryonic stem cell (hESC) derivatives are attractive candidates for therapeutic use. The engraftment and survival of hESC derivatives as xenografts or allografts require effective immunosuppression to prevent immune cell infiltration and graft destruction. Objective: To test the hypothesis that a short-course, dual-agent regimen of two costimulation-adhesion blockade agents can induce better engraftment of hESC derivatives compared to current immunosuppressive agents. Methods and Results: We transduced hESCs with a double fusion reporter gene construct expressing firefly luciferase (Fluc) and enhanced green fluorescent protein, and differentiated these cells to endothelial cells (hESC-ECs). Reporter gene expression enabled longitudinal assessment of cell engraftment by bioluminescence imaging. Costimulation-adhesion therapy resulted in superior hESC-EC and mouse EC engraftment compared to cyclosporine therapy in a hind limb model. Costimulation-adhesion therapy also promoted robust hESC-EC and hESC-derived cardiomyocyte survival in an ischemic myocardial injury model. Improved hESC-EC engraftment had a cardioprotective effect after myocardial injury, as assessed by magnetic resonance imaging. Mechanistically, costimulation-adhesion therapy is associated with systemic and intragraft upregulation of T-cell immunoglobulin and mucin domain 3 (TIM3) and a reduced proinflammatory cytokine profile. Conclusions: Costimulation-adhesion therapy is a superior alternative to current clinical immunosuppressive strategies for preventing the post-transplant rejection of hESC derivatives. By extending the window for cellular engraftment, costimulation-adhesion therapy enhances functional preservation following ischemic injury. This regimen may function through a TIM3-dependent mechanism. Stem Cells 2013;31:2354-2363.

    View details for DOI 10.1002/stem.1501

    View details for Web of Science ID 000327025600007