Professional Education

  • Doctor of Philosophy, Harbin Medical University (2009)

Stanford Advisors


Journal Articles

  • Optical image-guided cancer therapy. Current pharmaceutical biotechnology Bu, L., Ma, X., Tu, Y., Shen, B., Cheng, Z. 2014; 14 (8): 723-732


    Optical molecular imaging holds great promise for image guiding cancer therapy. The non-invasive guidance of therapeutic strategies would enable the removal of cancerous tissue while avoiding side effects and systemic toxicity, preventing damage of healthy tissues and decreasing the risk of postoperative problems. This review article highlights the advantages and disadvantages of the optical imaging techniques that are currently available, including their recent applications in image-guided cancer therapy. Three approaches for optical image-guided cancer therapy were discussed in this review, namely, bioluminescence imaging (BLI), fluorescence imaging (FI) and Cerenkov luminescence imaging (CLI). BLI is always used in small animal imaging for the in vivo tracking of therapeutic gene expression and cell-based therapy. To the contrary, FI display high promising for clinical translation. The applications of FI include image-guided surgery, radiotherapy, gene therapy, drug delivery and sentinel lymph node fluorescence mapping. CLI is a novel radioactive optical hybrid imaging strategy and its use for animal and clinical translation was also discussed. Perspectives on the translation of optical image-guided cancer therapy into clinical practice were provided.

    View details for PubMedID 24372233

  • Intrastriatal Transplantation of Retinal Pigment Epithelial Cells for the Treatment of Parkinson Disease: In Vivo Longitudinal Molecular Imaging with (18)F-P3BZA PET/CT. Radiology Bu, L., Li, R., Liu, H., Feng, W., Xiong, X., Zhao, H., Vollrath, D., Shen, B., Cheng, Z. 2014; 272 (1): 174-183


    Purpose To evaluate the performance of N-[2-(diethylamino)ethyl]-(18)F-5-fluoropicolinamide ((18)F-P3BZA) for visualizing porcine retinal pigment epithelium (pRPE) cells transplanted in the striatum for the treatment of Parkinson disease and to monitor the long-term activity of implanted pRPE cells by means of (18)F-P3BZA positron emission tomography (PET)/computed tomography (CT) in vivo. Materials and Methods Animal work was conducted in accordance with the administrative panel on laboratory animal care. In vitro cell uptake of (18)F-P3BZA was determined with incubation of melanotic pRPE or amelanotic ARPE-19 cells with (18)F-P3BZA. To visualize the implanted pRPE cells in vivo, normal rats (four per group) were injected with pRPE or ARPE-19 cells attached to gelatin microcarriers in the left striatum and with control gelatin microcarriers in the right striatum and followed up with small animal PET/CT. Longitudinal PET/CT scans were acquired in 12 rats up to 16 days after surgery. Postmortem analysis, which included autoradiography and hematoxylin-eosin, Fontana-Masson, and immunofluorescence staining, was performed. Data were compared with the Student t test, analysis of variance, and regression analysis. Results (18)F-P3BZA accumulated in pRPE cells effectively (3.48% of the injected dose [ID] per gram of brain tissue ± 0.58 at 1 hour after injection of the probe at 2 days after surgery in vivo) but not in control ARPE-19 cells (P < .05). Longitudinal PET/CT scans revealed that the activity of implanted pRPE cells decreased over time, as evidenced by a reduction in (18)F-P3BZA uptake (3.39% ID/g ± 0.18, 2.49% ID/g ± 0.41, and 1.20% ID/g ± 0.13 at days 2, 9, and 16, respectively; P < .05). Postmortem analysis helped confirm the results of in vivo imaging. Conclusion (18)F-P3BZA PET/CT is a feasible technique for visualizing and detecting the activity of implanted RPE cells in vivo. © RSNA, 2014 Online supplemental material is available for this article.

    View details for DOI 10.1148/radiol.14132042

    View details for PubMedID 24758555

  • In vitro and in vivo direct monitoring of miRNA-22 expression in isoproterenol-induced cardiac hypertrophy by bioluminescence imaging EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING Tu, Y., Wan, L., Zhao, D., Bu, L., Dong, D., Yin, Z., Cheng, Z., Shen, B. 2014; 41 (5): 972-984


    Growing evidence suggests that microRNAs (miRNAs) play key roles in cardiac hypertrophy. To measure the expression of endogenous miRNAs is very conducive to understanding the importance of miRNAs in cardiac hypertrophy. However, current methods to monitor endogenous miRNA levels, such as Northern blotting, quantitative real-time polymerase chain reaction (qRT-PCR), and microarrays cannot provide real-time information on miRNA biogenesis in vivo.We constructed a miRNA reporter imaging system to monitor miR-22 expression in isoproterenol-induced cardiac hypertrophy repetitively and noninvasively. There were three copies of the antisense of miR-22 (3×PT_miR-22) cloned into the 3' untranslated region (UTR) of the Gaussia luciferase (Gluc) reporter genes under the control of the cytomegalovirus (CMV) promoter in this miRNA reporter system (CMV/Gluc/3×PT_miR-22). CMV/firefly luciferase (Fluc) was used as a positive control for imaging of miR-22 expression. Meanwhile, quantifications of miR-22 in cardiomyocyte hypertrophy and in mouse cardiac hypertrophy induced by isoproterenol stimulation were measured by qRT-PCR. Furthermore, we used this miRNA reporter imaging system to appraise the antihypertrophic effect of antagomir-22 in vitro and in vivo.The bioluminescence signals of the CMV/Gluc/3×PT_miR-22 were gradually decreased with prolongation of isoproterenol intervention in vitro and in vivo. Overexpression of miR-22 was observed in cardiac hypertrophy, and markedly administration of antagomir-22 could reverse the upregulation of miR-22 and its prohypertrophic effects. Furthermore, knockdown of miR-22 by antagomir-22 could markedly reverse the repressed Gluc activities in vitro and in vivo. However, the Fluc activity of CMV/Fluc was not affected with isoproterenol treatment.This study elucidates the feasibility of using our constructed miRNA reporter imaging system to monitor the location and magnitude of expression levels of miR-22 in cardiac hypertrophy in vitro and in vivo.

    View details for DOI 10.1007/s00259-013-2596-3

    View details for Web of Science ID 000334417900020

    View details for PubMedID 24504502

  • A Comparative Study of Radio labeled Bombesin Analogs for the PET Imaging of Prostate Cancer JOURNAL OF NUCLEAR MEDICINE Liu, Y., Hu, X., Liu, H., Bu, L., Ma, X., Cheng, K., Li, J., Tian, M., Zhang, H., Cheng, Z. 2013; 54 (12): 2132-2138


    Radiolabeled bombesin (BBN) analogs that bind to the gastrin-releasing peptide receptor (GRPR) represent a topic of active investigation for the development of molecular probes for PET or SPECT of prostate cancer (PCa). RM1 and AMBA have been identified as the 2 most promising BBN peptides for GRPR-targeted cancer imaging and therapy. In this study, to develop a clinically translatable BBN-based PET probe, we synthesized and evaluated (18)F-AlF- (aluminum-fluoride) and (64)Cu-radiolabeled RM1 and AMBA analogs for their potential application in PET imaging of PCa.1,4,7-triazacyclononane, 1-glutaric acid-4,7 acetic acid (NODAGA)-conjugated RM1 and AMBA were synthesized and tested for their GRPR-binding affinities. The NODAGA-RM1 and NODAGA-AMBA probes were further radiolabeled with (64)Cu or (18)F-AlF and then evaluated in a subcutaneous PCa xenograft model (PC3) by small-animal PET imaging and biodistribution studies.NODAGA-RM1 and NODAGA-AMBA can be successfully synthesized and radiolabeled with (64)Cu and (18)F-AlF. (64)Cu- and (18)F-AlF-labeled NODAGA-RM1 demonstrated excellent serum stability and tumor-imaging properties in the in vitro stability assays and in vivo imaging studies. (64)Cu-NODAGA-RM1 exhibited tumor uptake values of 3.3 ± 0.38, 3.0 ± 0.76, and 3.5 ± 1.0 percentage injected dose per gram of tissue (%ID/g) at 0.5, 1.5, and 4 h after injection, respectively. (18)F-AlF-NODAGA-RM1 exhibited tumor uptake values of 4.6 ± 1.5, 4.0 ± 0.87, and 3.9 ± 0.48 %ID/g at 0.5, 1, and 2 h, respectively.The high-stability, efficient tumor uptake and optimal pharmacokinetic properties highlight (18)F-AlF-NODAGA-RM1 as a probe with great potential and clinical application for the PET imaging of prostate cancer.

    View details for DOI 10.2967/jnumed.113.121533

    View details for Web of Science ID 000328013000018

    View details for PubMedID 24198391

  • Ischemic Postconditioning-Mediated miRNA-21 Protects against Cardiac ischemia/reperfusion Injury via PTEN/Akt Pathway PLOS ONE Tu, Y., Wan, L., Fan, Y., Wang, K., Bu, L., Huang, T., Cheng, Z., Shen, B. 2013; 8 (10)


    Ischemic postconditioning (IPost) protects the reperfused heart from infarction which has drawn much attention recently. However, studies to date have rarely investigated the role of microRNAs (miRNAs) in IPost. The aims of this study were to investigate whether miR-21 is involved in the protective effect of IPost against myocardial ischemia-reperfusion (I/R) injury and disclose the potential molecular mechanisms involved.We found that miR-21 was remarkably up-regulated in mouse hearts after IPost. To determine the protective role of IPost-induced miR-21 up-regulation, the mice were divided into the following four groups: I/R group; I/R+IPost group (I/R mice treated with IPost); Antagomir-21+IPost+I/R group (I/R mice treated with anagomir-21 and IPost); Scramble+IPost+I/R group (I/R mice treated with scramble and IPost). The results showed IPost could reduce I/R injury-induced infarct size of the left ventricle, improve cardiac function, and prevent myocardial apoptosis, while knockdown of miR-21 with antagomir-21 could reverse these protective effects of IPost against mouse I/R injury. Furthermore, we confirmed that miR-21 plays a protective role in myocardial apoptosis through PTEN/Akt signaling pathway, which was abrogated by the PI3K inhibitor LY294002. The protective effect of miR-21 on myocardial apoptosis was further revealed in mouse hearts after IPost treatment in vivo.Our data clearly demonstrate that miR-21 is involved in IPost-mediated cardiac protection against I/R injury and dysfunction through the PTEN/Akt signaling pathway in vivo. Identifying the beneficial roles of IPost-regulated miRNAs in cardiac protection, which may be a rational target selection for ischemic cardioprotection.

    View details for DOI 10.1371/journal.pone.0075872

    View details for Web of Science ID 000325483600025

    View details for PubMedID 24098402

  • In Vivo Monitoring of Angiogenesis Inhibition via Down-Regulation of Mir-21 in a VEGFR2-Luc Murine Breast Cancer Model Using Bioluminescent Imaging PLOS ONE Zhao, D., Tu, Y., Wan, L., Bu, L., Huang, T., Sun, X., Wang, K., Shen, B. 2013; 8 (8)


    MicroRNA-21 (miR-21) is overexpressed in a wide range of cancers and involved in tumor proliferation and metastasis. However, the potential function of miR-21 in regulating tumor angiogenesis has been little disclosed. In this study, we treated the cultured 4T1 murine breast cancer cells and human umbilical vein endothelial cells (HUVECs) with miR-21 mimic, antagomir-21 or negative control (scramble), which were subjected to MTT, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), quantitative Reverse Transcriptase PCR (qRT-PCR) and immunoblotting analysis. In addition, 4T1 cells were implanted beneath the right breast fat pad of the VEGFR2-luc transgenic mice, which were randomly divided into three groups and received saline, antagomir-21 or scramble treatment once respectively after tumor model establishment. Bioluminescent imaging was used to monitor tumor growth and angiogenesis in vivo at 0d, 3d, 5d, 7d, 10d, and 14d after treatment. Mice were killed at the end of study and tumor tissues were collected for use. The results showed that knockdown of miR-21 by antagomir-21 decreased cell proliferation and induced apoptosis via targeting PTEN both in 4T1 cells and HUVECs. We also found the anti-angiogenesis and anti-tumor effects of antagomir-21 in the VEGFR2-luc transgenic mouse model using bioluminescent imaging. Moreover, the Western blotting data revealed that antagomir-21 inhibited tumor angiogenesis through suppressing HIF-1α/VEGF/VEGFR2-associated signaling pathway. In conclusion, the results from current study demonstrate that antagomir-21 can effectively suppress tumor growth and angiogenesis in VEGFR2-luc mouse breast tumor model and bioluminescent imaging can be used as a tool for noninvasively and continuously monitoring tumor angiogenesis in vivo.

    View details for DOI 10.1371/journal.pone.0071472

    View details for Web of Science ID 000323124000061

    View details for PubMedID 23951172

  • MicroRNA-22 Downregulation by Atorvastatin in a Mouse Model of Cardiac Hypertrophy: a new Mechanism for Antihypertrophic Intervention CELLULAR PHYSIOLOGY AND BIOCHEMISTRY Tu, Y., Wan, L., Bu, L., Zhao, D., Dong, D., Huang, T., Cheng, Z., Shen, B. 2013; 31 (6): 997-1008


    Growing evidence shows that microRNAs (miRNAs) are involved in various cardiac processes including cardiac hypertrophy. However, the modulation of miRNA by pharmacological intervention in cardiomyocyte hypertrophy has not been disclosed yet. methods: We constructed neonatal rat cardiomyocyte hypertrophy induced by angiotensin II stimulation and subjected to cardiomyocyte immunochemistry, qRT-PCR and immunoblotting analysis. In addition, we constructed the mouse cardiac hypertrophy using angomir-22 stimulation and demonstrated the potential antihypertrophic mechnism of atorvastatin.The results showed that a collection of miRNAs were aberrantly expressed in hypertrophic cardiomyocytes induced by angiotensin II stimulation. In addition, overexpression of miR-22 was found in angiotensin II-induced hypertrophic cardiomyocytes, whereas administration of atorvastatin could reverse the upregulation of miRNA-22 nearly back to the control level. Furthermore, up-regulation of miRNA-22 in cardiomyocytes in vitro and in vivo could induce cardiac hypertrophy, which could suppress the protein level of phosphatase and tensin homolog deleted on chromosome ten (PTEN). Concomitantly, the production of ANP, BNP and β-MHC was enhanced and cardiomyocyte size was increased. However, atorvastatin could markedly knockdown miRNA-22 expression and reverse these changes in cardiomyocytes. These results suggest that the contribution of atrovastatin to cardiomyocyte hypertrophy may be involved in downregulation of miRNA-22 expression, which modulates the activity of PTEN in cardiomyocyte hypertrophy. conclusion: This study demonstrates for the first time the modulation of miRNA-22 can be achieved by pharmacological intervention. The data generated from this study provides a rationale for the development of miRNA-based strategies for antihypertrophic treatment.

    View details for DOI 10.1159/000350117

    View details for Web of Science ID 000322727700024

    View details for PubMedID 23860036

  • Tyrosinase as a multifunctional reporter gene for Photoacoustic/MRI/PET triple modality molecular imaging. Scientific reports Qin, C., Cheng, K., Chen, K., Hu, X., Liu, Y., Lan, X., Zhang, Y., Liu, H., Xu, Y., Bu, L., Su, X., Zhu, X., Meng, S., Cheng, Z. 2013; 3: 1490-?


    Development of reporter genes for multimodality molecular imaging is highly important. In contrast to the conventional strategies which have focused on fusing several reporter genes together to serve as multimodal reporters, human tyrosinase (TYR) - the key enzyme in melanin production - was evaluated in this study as a stand-alone reporter gene for in vitro and in vivo photoacoustic imaging (PAI), magnetic resonance imaging (MRI) and positron emission tomography (PET). Human breast cancer cells MCF-7 transfected with a plasmid that encodes TYR (named as MCF-7-TYR) and non-transfected MCF-7 cells were used as positive and negative controls, respectively. Melanin targeted N-(2-(diethylamino)ethyl)-(18)F-5-fluoropicolinamide was used as a PET reporter probe. In vivo PAI/MRI/PET imaging studies showed that MCF-7-TYR tumors achieved significant higher signals and tumor-to-background contrasts than those of MCF-7 tumor. Our study demonstrates that TYR gene can be utilized as a multifunctional reporter gene for PAI/MRI/PET both in vitro and in vivo.

    View details for DOI 10.1038/srep01490

    View details for PubMedID 23508226

  • Assessment and comparison of magnetic nanoparticles as MRI contrast agents in a rodent model of human hepatocellular carcinoma CONTRAST MEDIA & MOLECULAR IMAGING Bu, L., Xie, J., Chen, K., Huang, J., Aguilar, Z. P., Wang, A., Sun, K. W., Chua, M., So, S., Cheng, Z., Eden, H. S., Shen, B., Chen, X. 2012; 7 (4): 363-372


    The purpose of this study was to synthesize, characterize and tailor the surface properties of magnetic nanoparticles with biocompatible copolymer coatings and to evaluate the efficiency of the resulting nanoconjugates as magnetic resonance imaging (MRI) contrast agents for liver imaging. Magnetic nanoparticles with core diameters of 10 and 30 nm were synthesized by pyrolysis and were subsequently coated with a copolymer containing either carboxyl (SHP) or methoxy groups as termini. All four formulas, and ferumoxides (Feridex I.V.(®)), were individually injected intravenously into separate, normal Balb/C mice (at 2.5, 1.0 and 0.56 mg Fe kg(-1)), and the animals underwent T(2)-weighted MRI at multiple time points post injection (p.i.) to evaluate the hepatic uptake and clearance. Furthermore, we compared the abilities of the new formulas and Feridex to detect tumors in an orthotropic Huh7 tumor model. Transmission electron microscopy (TEM) revealed a narrow size distribution of both the 10 and 30 nm nanoparticles, in contrast to a wide size distribution of Feridex. MTT, apoptosis and cyclin/DNA flow cytometry assays showed that the polymer coated nanoparticles had no adverse effect on cell growth. Among all the tested formulas, including Feridex, SHP-30 showed the highest macrophage uptake at the in vitro level. In vivo MRI studies on normal mice confirmed the superiority of SHP-30 in inducing hypointensities in the liver tissue, especially at clinical dose (0.56 mg Fe kg(-1)) and 3?T field. SHP-30 showed better contrast-to-noise ratio than Feridex on the orthotropic Huh7 tumor model. SHP-30 was found to be an efficient contrast agent for liver MR imaging. The success of this study suggests that, by improving the synthetic approach and by tuning the surface properties of IONPs, one can arrive at better formulas than Feridex for clinical practice.

    View details for DOI 10.1002/cmmi.494

    View details for Web of Science ID 000304665100002

    View details for PubMedID 22649042

  • A Four-Arm Star-Shaped Poly(ethylene glycol) (StarPEG) Platform for Bombesin Peptide Delivery to Gastrin-Releasing Peptide Receptors in Prostate Cancer ACS MACRO LETTERS Xu, Y., Huang, W., Ren, G., Qi, S., Jiang, H., Miao, Z., Liu, H., Lucente, E., Bu, L., Shen, B., Barron, A., Cheng, Z. 2012; 1 (6): 753-757

    View details for DOI 10.1021/mz300105n

    View details for Web of Science ID 000305320600023

  • Evaluation of (99) (TcN)-Tc-m-MPO as a New Myocardial Perfusion Imaging Agent in Normal Dogs and in an Acute Myocardial Infarction Canine Model: Comparison with (99) Tc-m-Sestamibi MOLECULAR IMAGING AND BIOLOGY Bu, L., Li, R., Jin, Z., Wen, X., Liu, S., Yang, B., Shen, B., Chen, X. 2011; 13 (1): 121-127


    (99)? (m)TcN-MPO ([(99)? (m)TcN(mpo)(PNP5)](+): mpo = 2-mercaptopyridine oxide and PNP5?= N-ethoxyethyl-N,N-bis[2-(bis(3-methoxypropyl)phosphino)ethyl]amine) is a cationic (99)? (m)Tc-nitrido complex, which has favorable biodistribution and myocardial uptake with rapid liver clearance in Sprague Dawley rats. The objective of this study was to compare the biodistribution and pharmacokinetics of (99)? (m)TcN-MPO and (99)? (m)Tc-Sestamibi in normal dogs, and to evaluate the potential of (99)? (m)TcN-MPO as a myocardial perfusion agent in canines with acute myocardial infarction.Five normal mongrel dogs were injected intravenously with (99)? (m)TcN-MPO. Venous blood samples were collected via a femoral vein catheter at 0.5, 1, 2, 3, 4, 5, 10, 20, 30, 40, 60, and 90 min post-injection (p.i.). Anterior-posterior planar images were acquired by ?-camera at 10, 20, 30, 60, 90, and 120 min p.i. Regions of interest (ROIs) were drawn around the heart, liver, and lungs. The heart/liver and heart/lung ratios were calculated by dividing the mean counts in heart ROI by the mean counts in the liver and lung ROI, respectively. For comparison, (99)? (m)Tc-sestamibi was also evaluated in the same five dogs. The interval period between the two examinations was 1 week to eliminate possible interference between these two radiotracers. In addition, single positron emission computed tomography (SPECT) images in the canine infarct model were collected 24 h after myocardial infarction at 30 and 60 min after the administration of (99)? (m)TcN-MPO (n = 4) or (99)? (m)Tc-Sestamibi (n = 4).It was found that (99)? (m)TcN-MPO and (99)? (m)Tc-Sestamibi displayed very similar blood clearance characteristics during the first 90 min p.i. Both (99)? (m)TcN-MPO and (99)? (m)Tc-Sestamibi had a rapid blood clearance with less than 50% of initial radioactivity remaining at 1 min and less than 5% at 30 min p.i. (99)? (m)TcN-MPO and (99)? (m)Tc-Sestamibi both showed good heart/lung contrast. The heart/liver ratio of (99)? (m)TcN-MPO increased with time (0.53 ± 0.06 at 10 min, 0.90 ± 0.062 at 30 min, and 1.22 ± 0.06 at 60 min p.i.), whereas the heart/liver ratio of (99)? (m)Tc-Sestamibi remained low at all time points (0.50 ± 0.03 at 10 min, 0.64 ± 0.03 at 30 min, and 0.60 ± 0.02 at 60 min p.i.). SPECT imaging studies in canines with acute myocardial infarction indicated that good visualization of the left ventricular wall and perfusion defects could be achieved at 30 min after administration of (99)? (m)TcN-MPO but not after (99)? (m)Tc-Sestamibi.The combination of reasonable heart uptake with rapid hepatobiliary excretion makes (99)? (m)TcN-MPO a promising new radiotracer for myocardial perfusion imaging.

    View details for DOI 10.1007/s11307-010-0304-2

    View details for Web of Science ID 000286395600016

    View details for PubMedID 20458635

  • Effects of Nanoparticle Size on Cellular Uptake and Liver MRI with Polyvinylpyrrolidone-Coated Iron Oxide Nanoparticles ACS NANO Huang, J., Bu, L., Xie, J., Chen, K., Cheng, Z., Li, X., Chen, X. 2010; 4 (12): 7151-7160


    The effect of nanoparticle size (30-120 nm) on magnetic resonance imaging (MRI) of hepatic lesions in vivo has been systematically examined using polyvinylpyrrolidone (PVP)-coated iron oxide nanoparticles (PVP-IOs). Such biocompatible PVP-IOs with different sizes were synthesized by a simple one-pot pyrolysis method. These PVP-IOs exhibited good crystallinity and high T(2) relaxivities, and the relaxivity increased with the size of the magnetic nanoparticles. It was found that cellular uptake changed with both size and surface physiochemical properties, and that PVP-IO-37 with a core size of 37 nm and hydrodynamic particle size of 100 nm exhibited higher cellular uptake rate and greater distribution than other PVP-IOs and Feridex. We systematically investigated the effect of nanoparticle size on MRI of normal liver and hepatic lesions in vivo. The physical and chemical properties of the nanoparticles influenced their pharmacokinetic behavior, which ultimately determined their ability to accumulate in the liver. The contrast enhancement of PVP-IOs within the liver was highly dependent on the overall size of the nanoparticles, and the 100 nm PVP-IO-37 nanoparticles exhibited the greatest enhancement. These results will have implications in designing engineered nanoparticles that are optimized as MR contrast agents or for use in therapeutics.

    View details for DOI 10.1021/nn101643u

    View details for Web of Science ID 000285449100015

    View details for PubMedID 21043459

  • MR Reporter Gene Imaging of Endostatin Expression and Therapy MOLECULAR IMAGING AND BIOLOGY Wang, K., Wang, K., Shen, B., Huang, T., Sun, X., Li, W., Jin, G., Li, L., Bu, L., Li, R., Wang, D., Chen, X. 2010; 12 (5): 520-529


    The aim of this study is to monitor endostatin gene expression and therapy using transferrin receptor (TfR) as reporter gene and transferrin conjugate of ultrasmall supramagnetic iron oxide nanoparticle (Tf-USPIO) as magnetic resonance (MR) reporter probe.A retroviral plasmid (pLP-LNCX) encoding mouse endostatin and TfR was constructed, and packaged with a titer of 4 × 10(7)colony-forming units per millimeter. MDA-MB-231 breast tumors were established in BALB/c mice by subcutaneous injection of 2 × 10(6) MDA-MB-231 cells. Mice were intratumorally injected with recombinant retrovirus and imaged with MR using Tf-USPIO. Western blot, Prussian blue, and immunohistochemical staining were performed to validate the magnetic resonance imaging results. The antitumor effect of retro-endostatin (ES)-TfR was also evaluated by intratumoral injection of the viral vector.The expression of both endostatin and TfR genes in MDA-MB-231 cells after retroviral transfection was confirmed by Western blot and flow cytometry. Tf-USPIO conjugate binds specifically to cells stably transfected with retro-ES-TfR. After intravenous injection of the Tf-USPIO conjugate, there was a more pronounced decrease in T2 relaxation time in tumors treated with retro-ES-TfR than in tumors treated with empty retrovirus retro-LNCX. The expression of ES gene significantly delayed the growth of MDA-MB-231 tumor and reduction of microvessel density and VEGF level as compared to those without viral transfection or transfected with empty retro-LNCX vector.Endostatin therapeutic gene expression was visualized successfully using TfR reporter gene and Tf-USPIO MR reporter probe, which indicates that MR reporter gene imaging may be valuable in gene therapy to evaluate therapeutic gene expression and treatment efficacy.

    View details for DOI 10.1007/s11307-009-0286-0

    View details for Web of Science ID 000282273200008

    View details for PubMedID 19957205

  • HSA coated MnO nanoparticles with prominent MRI contrast for tumor imaging CHEMICAL COMMUNICATIONS Huang, J., Xie, J., Chen, K., Bu, L., Lee, S., Cheng, Z., Li, X., Chen, X. 2010; 46 (36): 6684-6686


    We report in this Communication a facile, two-step surface modification strategy to achieve manganese oxide nanoparticles with prominent MRI T1 contrast. In a U87MG glioblastoma xenograft model, we confirmed that the particles can accumulate efficiently in tumor area to induce effective T1 signal alteration.

    View details for DOI 10.1039/c0cc01041c

    View details for Web of Science ID 000281604500010

    View details for PubMedID 20730157

Stanford Medicine Resources: